Notes A A7-3 Using the quadratic equation to find complex roots

When our quadratic equation has three terms, we need to use the quadratic equation to find complement to find complex roots

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Find the roots of: $y = x^2 - 4x + 5$. Notice that it does not factor nicely because it has two complex and no real roots.

We need to solve $0 = 1x^2 - 4x + 5 = 0$

$$a = 1$$
 $b = -4$ $c = 5$

Plug those into the equation:

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(5)}}{2(1)}$$
 and solve for x.

$$= \frac{4 \pm \sqrt{16-20}}{2}$$

$$= \frac{4 \pm \sqrt{-4}}{2}$$

$$= \frac{4 \pm 2i}{2}$$

$$=\frac{4}{2}+\frac{2i}{2}$$

$$= \frac{4 \pm 2i}{2}$$

$$= \frac{4 \pm 2i}{2}$$

$$= \frac{4}{2} \pm \frac{2i}{2}$$

$$= (x - (2 + i))(x) = (x - (2 +$$

plus or fricking minus

standard to factored factored to standard How do we factor $(x^2 + positive number)$?

example: $x^2 + 25$

step 1: Set it = 0

$$x^2 + 25 = 0$$

step 2: Solve for x

$$\int x^2 = \int -25$$
$$x = +5i$$

step 3: These are the roots, now write the factors

$$(x-5i)(x--5i)$$

$$x^2 + 25 = (x-5i)(x+5i)$$